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LETTER TO THE EDITOR 

Exact solubility of the self-dual and the string melting points 
in the restricted solid-on-solid model 

T T Truongt and M den Nijs$§ 
t Institut fur Theoretische Physik, Freie Universitat Berlin, Arnimallee 14, D-1000 Berlin 
33, West Germany 
f Laboratorium voor Technische Natuurkunde, Lorentzweg 1, Postbus 5046, 2600 CA, 
Delft, The Netherlands 

Received 4 March 1986 

Abstract. The restricted solid-on-solid model, which describes the roughening of two- 
dimensional interfaces, is found to be exactly soluble in two instances: at a point where 
the model is self-dual under the duality transformation of the five-state clock model and 
at the string melting transition where the model belongs to the same universality class as 
an Ising model on a transverse vibrating lattice. Both points are located in the subspace 
of the 19-vertex model solved by Zamolodchikov and Fateev. 

Interconnections between various models in two-dimensional statistical mechanics 
have proven to be a valuable source of information for determining their critical 
behaviour. It often happens that self-dual points and critical points of different models 
can be mapped onto each other, e.g. the self-dual lines in the Potts, Ashkin-Teller and 
eight-vertex model (see, e.g., den Nijs 1979) and moreover that at these points the 
models are exactly soluble. One of us pointed out recently that the restricted solid-on- 
solid (RSOS) model (den Nijs 1985b) (which is not the model of Andrews et aZ(1984)), 
with only nearest-neighbour interactions, is self-dual at one specific temperature under 
the duality transformation of the five-state clock model (den Nijs 1985a, b, c) which 
contains the RSOS model as a limiting case (Domany et a1 1980). Another special point 
is located at antiferromagnetic coupling. There the model undergoes a string melting 
transition which belongs to the same universality class as that in an Ising model on a 
transverse vibrating lattice (den Nijs 1985b). Guided by past experience, we suspect 
that the RSOS model might also be exactly soluble at these points. In this letter we 
show that this is indeed the case: both points are in fact special cases of a 19-vertex 
model solved recently by Zamolodchikov and Fateev (1980). 

Solid-on-solid models describe roughening transitions in two-dimensional interfaces 
(for a review see Weeks 1980). The interface is characterised with respect to a reference 
plane by integer-valued column height variables h,, at sites r of the lattice. In the 
RSOS model the step height between nearest-neighbour sites is restricted to dh( r, r ’ )  = 
0, *l. The most general Hamiltonian, with interactions between all four columns in 
each elementary plaquette on a square lattice (see figure 1) has four independent 
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Figure 1. The column height variables h, and step variables d h ( r ,  r ' )  at an elementary 
plaquette. The broken lines represent the square lattice of the RSOS model and the full 
lines the lattice of the corresponding 19-vertex model. 

coupling constants if we assume step-up step-down symmetry and that the interactions 
are isotropic, i.e. 

where ( , ) denotes summation over nearest neighbours, ( , ) over next-nearest 
neighbours, and { , . . . , } over the elementary plaquettes. As usual, X and the coupling 
constants are dimensionless quantities, divided by ( -kB T ) .  

For the sake of clarity, it is useful to recall the behaviour of the RSOS model along 
the nearest-neighbour axis, L,  = L2 = Q = 0 (den Nijs 1985a, b, c). There are three 
phases in the interval going from antiferromagnetic to ferromagnetic zero temperature, 
i.e. from J = -a to J = +a: the BCSOS rough phase, the RSOS rough phase and the 
ferromagnetic flat-ordered phase. This ordered phase has a finite correlation length 
6, but in both rough phases, [=a. In the latter, the roughness of the interface can 
be characterised by the amplitude of the logarithmic divergence of the height-height 
correlation function 

At J = -cc the model reduces to the exactly soluble body-centred solid-on-solid (BCSOS) 
model (van Beijeren 1977), where a step must be present at each bond, i.e. dh( r, r ' )  = * l .  
The 'zeros' dh(r ,  r ' )  = 0 are frozen out. The BCSOS model is at the so-called ice point, 
which implies that the interface remains rough with K = ~ / 6 .  At finite J < J, neighbour- 
ing equal heights ( d h (  r, r') = 0) are allowed but do not contribute to the fractal critical 
fluctuations of the step structure yet. These 'zeros' form strings of closed loops with 
a typical diameter I& inversely proportional to their string tension. Thus the rough 
phase contains loop-like impurities of size lo, but remains of BCSOS type. 
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The model belongs to the same universality class as an Ising model on a transverse 
vibrating lattice because the loops of bonds with dh( r, r’)  = 0 can be identified with 
Bloch walls of an Ising model and because the dh( r, r‘)  = i l  BCSOS steps of the rough 
interface can be identified with lattice vibrations. The ‘zeros’, i.e. the Ising Bloch walls, 
reduce the height fluctuations. It is as their presence stiffens the elastic constants 
locally (den Nijs 1985b). 

At J,  = -0.4815 the Ising spins disorder: the loops of ‘zeros’ melt, due to meander 
entropy. That this transition is indeed of Ising type has been confirmed numerically 
with finite-size scaling methods (den Nijs 1985b). At J = J, the ‘zeros’ start to participate 
in the fractal step structure. For J , < J < J ,  the model is in the RSOS rough phase. 

At increasing J, the ‘zeros’ reduce the roughness K further, until JR = 0.633; K then 
becomes equal to the universal value K = 5712 where a Kosterlitz-Thouless (KT) 
transition takes place into the flat-ordered phase. The KT nature of this roughening 
transition has also been confirmed numerically (see, e.g., Luck 1981, den Nijs 1985~).  

Inside the RSOS rough phase there is one special point JsD = 1/2( 1 + J 5 )  = 0.4812 
at which the model is self-dual under the duality transformation of the five-state clock 
model. The self-duality implies that K = 2 ~ / 5  and also that corrections to scaling 
have a special behaviour at J=JsD (den Nijs 1985~).  

Zamolodchikov and Fateev (1980) showed that the RSOS model, defined by equation 
(l), is exactly soluble in a one-dimensional subspace. Of course, they did not originally 
present their result in the RSOS model language. They constructed a special class of 
spin-1 factorisable, elastic, unitary, CPT and charge symmetry invariant two- 
dimensional S matrices and showed that their solution allows one to construct a 
commuting family of transfer matrices for a 19-vertex model. This 19-vertex model is 
equivalent to the RSOS model, as pointed out by Sogo et al (1983a, b) if one identifies 
the step states dh(r ,  r’)  = -dh(r ’ ,  r )  = h,-h, . ,  =0, i l  on the bonds of the two- 
dimensional square lattice of figure 1 with the spin-1 variables. The so-called ‘ice rule’ 
in the vertex model (Lieb 1967), which states that all contour integrals round a site 
over the step variables are zero (the absence of screw dislocations in the interface) is 
equivalent to conservation of spin momentum. 

Zamolodchikov and Fateev solved the model in a two-dimensional subspace 
described by two parameters CY and p. The first parameter corresponds to a lattice 
anisotropy in the next-nearest-neighbour interactions and takes the values ~ / 2  in the 
isotropic case. The exactly soluble line in the four-dimensional subspace of equation 
(1) is now parametrised by p as 

U =exp(2J) = 1 - t 

t = *exp( Q + J + 2L1) = sin2 p(sin 2 p  sin 4p)-’  

a = exp(J+ L,) = sin p(sin 2p)-’ 

s = exp L, = sin p sin 3p(sin 2 p  sin 4p)-’ (3) 

where U, t, a, s label the Boltzmann weights in the 19-vertex model used by Zamolod- 
chikov and Fateev. p is real along one part of this solubility line and switches to pure 
imaginary values at p = 0. The projection of this line in the ( J ,  L,) plane is shown in 
figure 2. Note that there are two separate branches at positive Boltzmann weights. 

The main point of this letter is the observation that the solubility line, equation 
(3), intersects the nearest-neighbour axis (e.g. L1 = L2 = Q = 0) at precisely two points, 
at p = ~ / 5  and 2 ~ 1 5 .  These points are special points of the RSOS model. For p = 2 ~ 1 5  
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Figure 2. Projection of the exactly soluble line, equation (3) ,  on the ( J ,  L,) plane. 

we find e’ = 1/2(1 +d5) which is the self-dual point J =  JSD (den Nijs 1985b). For 
p = ~ / 5 ,  equation (3) yields e’ = 1/2(d5 - 1) and the corresponding value of J is so 
close to the numerical estimate of the string melting coupling J ,  = -0.4815 * 0.0005 
(den Nijs 1985b) that we can identify it with J,. Also notice that at JSD, p happens 
to be equal to the value of the roughness parameter K = 2 ~ / 5 .  At J ,  the value of K 
has been estimated numerically: K = 0.638 f 0.006 (den Nijs 1985b). This value is close 
enough to r r / 5  to conclude that also at J,, p = K = r r / 5 .  

One interesting prospect is to change the parameters of the model such that the 
string melting at J ,  and the roughening at J R  approach each other and start to interfere. 
This takes place in the generalised Hamiltonian (see equation (1)). A systematic 
discussion and numerical study using finite-size scaling methods is in progress (Rom- 
melse and den Nijs 1986) for the rich phase diagram of the generalised RSOS model. 
Here we simply point out how the exact soluble line fits into it. 

Sogo et a1 (1983a, b) calculated the free energy along the exactly soluble line. They 
report first-order KDP-like singularities in the free energy at p = ~ 1 2 ,  ~ 1 4 .  At these 
values of p the exactly soluble line crosses over to another branch. They also report 
a roughening transition with a Kosterlitz-Thouless-type infinite-order singularity in 
the specific heat at p =0, where p crosses over from real to pure imaginary values 
(point M in figure 2). They further suggest that, although the interactions along the 
exactly soluble line are somewhat complicated, the model behaves essentially the same 
as the BCSOS model. However, a close inspection of their free energy expressions in 
the neighbourhood of p = 0 reveals no such infinite-order singularity. 

The free energy for p real and v = (2ap/rr)  arbitrary is given by equation (2.23) 
of Sogo et a1 (1983b): 

2s sinh ut sinh(2p - v ) t  
f+(a, p )  =In A+ d t .  

t sinh r r t  cosh 2pt (4) 
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This expression also applies to a generalisation of the spin-1 model to a q =  
(2S+ 1)-state vertex model (Sogo et a1 1983a, b). po is a normalisation constant. Our 
p parameter is one half of that used by Sogo et al. The symbol E means the excess 
of p over a given n, = pp.  Using the following identity: = p p  - n r ,  so for p small 

2s S 
 COS^(^ -4pp)t  = 2 cosh 2pt  cosh[ 7~ - (2p + 1)2p]t ( 5 )  

which applies to odd values of q only, the integrand in equation (4) simplifies 
considerably and in fact the integration can be explicitly done with the formula 
(Oberhettinger 1957) 

( 6 )  
OC cosh ax -cosh bx cos( r b /  c )  + cosh( r y /  c )  

cos xy dx = 4 In lo xsinh cx cos(ru/c)+cosh(ry/c)’  

The result is then (always for small p )  

S sin(2pp + U )  sin[( p + 1)2p - U] 

sin 2pp sin 2(p + 1 ) p  f+ (a ,p )= lnPo+  n = l  c In (7) 

Now at purely imaginary 2ip = A  and i u  = U, the free energy is represented by the 
infinite series; see equation (2.14) in Sogo er ul (1983b): 

(8) 
sinh nu sinh(A - n ) n  

n cosh nA f-( U, A )  = In pa+ 2 

Again the identity, for s integer ( q  odd), 
2s S 

p = l  p = l  
exp(-2Anp) = 2  cosh nh + exp[-An(2p+l)] (9) 

allows us to simplify the series of equation (8) and the summation may be explicitly 
performed first over p ,  then over n, by using formula (1.78) of Oberhettinger (1973). 
We obtain 

sinh( pA + U )  sinh[( p + 1)A - U ]  A)=lnpoE~ sinhph sinh(p+l)A 

Thus the transition from equation (7) to equation (10) is analytic including our isotropic 
case where v = p ( p  = A/2). This result agrees with that of Zamolodchikov and Fateev 
(1980). Thus an essential singularity can only exist for q = even, in particular for q = 2 
(van Beijeren 1977). 

Point M is probably a high-order multicritical point in the phase diagram. Not 
only point .I, on the nearest-neighbour axis, but the entire branch of the exactly soluble 
line with 0 < p < 7r/4 must be part of the string melting critical surface. Otherwise 
our Ising singularity should have been observed along this as at J,. Moreover, the part 
of this line beyond M where p is pure imaginary is likely to be part of the coexistence 
surface between the ferro- and antiferromagnetic flat-ordered interface phases. In the 
limit ip+co, it lies in the plane J = O  which is the asymptotic equation for this 
coexistence plane as L2 + -a. So M is likely to be the multicritical point in the phase 
diagram where the roughening transition, string melting transition and coexistence 
surfaces meet. Along the exactly soluble line this point is approached in a special way 
such that no singularity in the free energy is seen. 
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Note that the roughness parameter K cannot be equal to p along the entire exactly 
soluble line. At Js and J S D ,  p = K, but at the roughening point M where p = 0, K 
should take the universal value 7 r / 2 .  

The other branch of the exactly soluble line, which goes through the self-dual point 
JsD at p = 27r/5, must lie entirely inside the RSOS rough phase. There are no singularities 
in the free energy nor special points where the nature of the solution changes. It is 
simple to convince oneself that in the limit p = n/3, where L,+ CO while J = -L ,  = Q = 
4 In 2 ,  this line indeed remains inside the RSOS rough phase, using simple estimates for 
the meander contributions to the step free energies (Rommelse and den Nijs 1986). 
This branch of the exactly soluble line does not seem to be special, except that, as at 
the self-dual point JsD, the corrections to scaling probably simplify. 
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